Assessment of the Patient Movement for Lesion during Myocardial Perfusion SPECT Imaging by Cardiac Phantom
نویسندگان
چکیده
Movement of the patient during myocardial perfusion SPECT leads to some artifacts that make the interpretation difficult. In this study, myocardial perfusion imaging protocol was performed on a cardiac phantom and SPECT was performed by simulating patient movements. A lesion model with dimensions of 1.2 × 2 × 2 cm was created on the inferoseptal wall of the cardiac phantom. Imaging was done in circular orbits in 64 × 64 matrix and step and shoot mode. First set of images taken with no movement was referred as the reference image. During imaging, patient movement was simulated by moving the phantom in ±X and ±Y directions between the frames starting from 8th frame to 16th frame. At the end of imaging, Bull’s eye maps of images with movement were compared with Bull’s eye maps of reference images. Bull’s eye maps were evaluated by an experienced nuclear medicine physician. Shifting patient’s movement in all directions by ±1 and ±2 cm, displaced the localization of the lesion mildly and this did not hamper the evaluation. However, movements of ±3 or ±4 cm resulted in artifacts which in turn caused partial or no visualization of the lesion. In motion corrected images, the lesion could be evaluated in ±1 and ±2 cm movements while lesion could not be evaluated in ±3 and ±4 cm movements. As a result, movement greater than ±3 cm causes significant image artifacts and this should be considered as a potential source of error in myocardial perfusion studies.
منابع مشابه
The influence of misregistration between CT and SPECT images on the accuracy of CT-based attenuation correction of cardiac SPECT/CT imaging: Phantom and clinical studies
Introduction: Integration of single photon emission computed tomography (SPECT) and computed tomography (CT) scanners into SPECT/CT hybrid systems permit detection of coronary artery disease in myocardial perfusion imaging (MPI). Misregistration between CT and emission data can produce some errors in uptake value of SPECT images. The aim of this study was evaluate the influence...
متن کاملSimulation and patient studies of scatter correction in cardiac SPECT imaging
Introduction: Myocardial perfusion imaging is a nuclear medicine imaging method that is used to detect coronary artery diseases. One of the main sources of error in this imaging method is the detection of Compton scattered photons in the photopeak energy window used for data acquisition. This results in the degradation of the image contrast, and therefore decreases the...
متن کاملCompensation of Cross-Contamination in Simultaneous 201Tl/99mTc Myocardial Perfusion SPECT Imaging
Introduction: It is a common protocol to use 201Tl for the rest and 99mTc for the stress cardiac SPECT imaging. Theoretically, both types of imaging may be performed simultaneously using different energy windows for each radionuclide. However, a potential limitation is the cross-contamination of scattered photons from 99mTc and collimator X-rays into the 201Tl energy window. We used a middle en...
متن کاملEvaluation of attenuation correction process in cardiac SPECT images
Introduction: Attenuation correction is a useful process for improving myocardial perfusion SPECT and is dependent on activity and distribution of attenuation coefficients in the body (attenuation map). Attenuation artifacts are a common problem in myocardial perfusion SPECT. The aim of this study was to compare the effect of attenuation correction using different a...
متن کاملCovid-19 manifestation on Tl-201 myocardial perfusion SPECT/CT
A 67 years old woman was referred to nuclear medicine center for myocardial perfusion imaging (MPI) for assessment of ischemic heart dieses (IHD).She had a history of atypical chest pain and dyspnea since about 10 days before admission. The MPI SPECT/CT was performed by stress/redistribution Tl-201 protocol. MPI was interpreted as relatively good coronary flow with no appreciable stress induced...
متن کامل